Markscheme

November 2017

Physics

Higher level

Paper 3

This markscheme is the property of the International Baccalaureate and must **not** be reproduced or distributed to any other person without the authorization of the IB Global Centre, Cardiff.

Section A

Question		ion	Answers	Notes	Total
1.	а		single smooth curve passing through all data points \checkmark	Do not accept straight lines joining the dots Curve must touch some part of every x	1
1.	b	i	tangent drawn at 80 °C ✓		
			gradient values separated by minimum of 20 °C \checkmark	Do not accept tangent unless "ruler" straight.	
				Tangent line must be touching the curve drawn for MP1 to be awarded.	3
			$9.0 \times 10^{-4} \text{ w kJ kg}^{-1} \text{K}^{-2} \text{ w} \checkmark$	Accept values between 7.0×10^{-4} and 10×10^{-4} .	
				Accept working in J, giving 0.7 to 1.0	
1.	b	ii	kJ kg ⁻¹ K ⁻² ✓		1
1.	с	i	«0.1×4.198×10 =» 4.198 «kJ» <i>or</i> 4198 «J» ✓	Accept values between 4.19 and 4.21	1
1.	С	ii	percentage uncertainty in $\Delta T = 10\%$ ✓	Allow fractional uncertainties in MP1 and MP2	
			«2%+5%+10% = »17% ✓	Watch for ECF from (c)(i) Watch for ECF from MP1	
			absolute uncertainty = $(0.17 \times 4.198) = 0.7 \times 4.198$ absolute uncertainty = $(0.17 \times 4.198) = 0.7 \times 4.198$ <i>CR</i> absolute uncertainty to more than 1 sig fig and consistent final answer \checkmark	Watch for ECF from MP2 Do not accept an answer without justification	3

Question		on	Answers	Notes	Total
2.	а		$\ll \varepsilon = IR + Ir \gg$	No mark for stating data booklet equation	
			$\frac{1}{I} = \frac{R}{\varepsilon} + \frac{r}{\varepsilon} \checkmark$ identifies equation with $y = mx + c \checkmark$	Do not accept working where r is ignored or $\varepsilon = IR$ is used OWTTE	2
			whence $m = \frac{1}{\varepsilon}$ »		
2.	b		«−» r ✓	Allow answer in words	1

3.	а	«to reduce» random errors ✓	OWTTE	
		to reduce absolute uncertainty ✓ to improve precision ✓	Do not accept just "to find an average" or just "reduce error" Ignore any mention to accuracy	1 max
3.	b	as the literature value is within the range « $9.7 - 11.1$ » \checkmark	OWTTE	2
		hence it is accurate ✓	MP2 must be correctly justified	۷

Section B

Option A — Relativity

C	Questi	on	Answers	Notes	Total
4.			light is an EM wave ✓		2
			speed of light is independent of the source/observer \checkmark		2

5.	а		a co-ordinate system in which measurements «of distance and time» can be made \checkmark	Ignore any mention to inertial reference frame.	1
5.	b		closing speed = $c \checkmark$		2
			2 «s» ✓		2
5.	С		<i>u</i> and <i>v</i> are velocities with respect to the same frame of reference/Earth AND u' the relative velocity \checkmark	Accept 0.4c and 0.6c for u and v	1
5.	d		$\frac{-0.4 - 0.6}{1 + 0.24} \checkmark$		2
			«−»0.81 <i>c</i> ✓		
5.	е	i	$\gamma = 1.25 \checkmark$		
			so the time is $t = 1.6 \ll s \approx \checkmark$		2
5.	е	ii	gamma is smaller for B ✓		2
			so time is greater than for A \checkmark		Ζ

C	Question	Answers	Notes	Total
6.	a	the length of an object in its rest frame <i>OR</i> the length of an object measured when at rest relative to the observer ✓		1
6.	b	world lines for front and back of tunnel parallel to ct axis \checkmark world lines for front and back of train \checkmark which are parallel to ct' axis \checkmark	ct ct'	3
6.	C	realizes that gamma = 1.25 \checkmark 0.6c \checkmark		2

(Question 6 continued)

G	Question	Answers	Notes	Total
6.	d	ALTERNATIVE 1 indicates the two simultaneous events for t frame \checkmark marks on the diagram the different times «for both spacetime points» on the ct' axis «shown as $\Delta t'$ on each diagram» \checkmark ALTERNATIVE 2: (no diagram reference) the two events occur at different points in space \checkmark statement that the two events are not simultaneous in the t' frame \checkmark	ct	2

Q	Question		Answers	Notes	Total
7.	а		Λ momentum = 900 \checkmark		
			$E_{\text{proton}} = \sqrt{pc^2 + (mc^2)^2} = \sqrt{630^2 + 938^2} = 1130 \text{ wMeV} $		
			$E_{\text{pion}} = \sqrt{270^2 + 140^2} = 304 \text{ (MeV)} \text{ (MeV)}$		4
			so rest mass of $\Lambda = (\sqrt{(1130 + 304)^2 - 900^2}) = 1116 \text{ MeV c}^{-2} \text{ so } \checkmark$		
7.	b		$\ll E = \gamma mc^2 \text{ so } \approx \gamma = \ll \frac{1434}{1116} = \approx 1.28 \checkmark$		2
			to give 0.64 <i>c</i> ✓		

C	Question	Answers	Notes	Total
8.	а	 this is gravitational time dilation OR black hole gives rise to a «strong» gravitational field ✓ 		
		clocks in stronger field run more slowly <i>OR</i> the clock «signal» is subject to gravitational red-shift ✓		2 max
		the clock is subject to gravitational red shift <i>OR</i> the clock has lost gravitational potential energy in moving close to the black hole ✓		
8.	b	ALTERNATIVE 1 (10 ks is in observer frame):		
		$\Delta t' = 10000 \sqrt{1 - \frac{6.0 \times 10^5}{7.0 \times 10^8}} \checkmark$ 9995.7 so 9995 «ticks» \checkmark	Allow 9996 Allow ECF if 10 is used instead of 10000	
		ALTERNATIVE 2 (10 ks is in rocket frame):		2
		$\Delta t = \frac{10000}{\sqrt{1 - \frac{6.0 \times 10^5}{7.0 \times 10^8}}} \checkmark$ 10004 «ticks» \checkmark	Allow ECF if 10 is used instead of 10000	

Option B — Engineering physics

Question		on	Answers	Notes	Total
9.	a		weight, normal reaction and friction in correct direction ✓ correct points of application for at least two correct forces ✓	Labelled on diagram.	2

(Question 9 continued)

C	uestio	n Answers	Notes	Total
9.	b	ALTERNATIVE 1 $ma = mg \sin \theta - F_{t} \checkmark$ $I\alpha = F_{t} \times r$ OR $mr\alpha = F_{t} \checkmark$ $\alpha = \frac{a}{r} \checkmark$	Can be in any order Accept answers using the parallel axis theorem (with $I = 2 mr^2$) only if clear and explicit mention that the only torque is from the weight	
		$ma = mg \sin \theta - mr \frac{a}{r} \rightarrow 2a = g \sin \theta \checkmark$ $ALTERNATIVE 2$ $mgh = \frac{1}{2}I\omega^{2} + \frac{1}{2}mv^{2} \checkmark$ substituting $\omega = \frac{v}{r}$ « giving $v = \sqrt{gh} \gg \checkmark$ correct use of a kinematic equation \checkmark use of trigonometry to relate displacement and height « $s = h \sin \theta \gg \checkmark$	For alternative 2, MP3 and MP4 can only be awarded if the previous marking points are present	4

(Question 9 continued)

Question		on	Answers	Notes	Total
9.	С		1.68 «ms ⁻² » ✓		1
9.	d		ALTERNATIVE 1		
			$N = mg\cos\theta \checkmark$		
			$F_{\rm f} \leq \mu m g \cos \theta \checkmark$		
			ALTERNATIVE 2		2
			$F_{\rm f} = ma$ «from 9(b)» \checkmark		
			so $F_{\rm f} = \frac{mg\sin\theta}{2}$ \checkmark		
9.	е		$F_{\rm f} = \mu m g \cos \theta \checkmark$		
			$\frac{mg\sin\theta}{2} = mg\sin\theta - \mu mg\cos\theta$ OR $mg\frac{\sin\theta}{2} = \mu mg\cos\theta \checkmark$		3
			algebraic manipulation to reach $tan \theta = 2\mu \checkmark$		

Question		Answers	Notes	
10.	a	$500000 \times (2 \times 10^{-3})^{\frac{5}{3}} = 100000 \times V^{\frac{5}{3}} \checkmark$ $V = 5.25 \times 10^{-3} \text{ (m}^3 \text{)} \checkmark$	Look carefully for correct use of pV^{γ} = constant	2
10.	b	correct vertical and horizontal lines ✓ curve between B and C ✓	Allow tolerance ± 1 square for A, B and C Allow ECF for MP2 Points do not need to be labelled for marking points to be awarded 100^{-1}_{-100} 100^{-1	2
10.	с	use of $PV = nRT$ OR use of $\frac{P}{T} = \text{constant} \checkmark$ $T = \ll 5 \times 290 = \gg 1450 \ll K \gg \checkmark$		2

(Question 10 continued)

Q	Question		Answers	Notes	Total
10.	d		area enclosed 🗸		
			work is done by the gas during expansion <i>OR</i>		2 max
			work is done on the gas during compression \checkmark		
			the area under the expansion is greater than the area under the compression \checkmark		

Q	luesti	on	Answers	Notes	Total
11.	а	i	density = 785 «kgm ⁻³ » \checkmark « $\frac{4}{3}\pi(0.03)^3 \times 785 \times 9.8 = > 0.87$ «N» \checkmark	Accept answer in the range 784 to 786	2
11.	a	ii	$\frac{0.87}{\frac{4}{3}\pi(0.03)^3 \times 1080 \times 9.8}$ <i>OR</i> $\frac{0.87}{1080 \times 1.13 \times 10^{-4}}$ <i>OR</i> $\frac{785}{1080} \checkmark$ 0.727 or 73 % ✓	Allow ECF from (a)(i)	2
11.	b		use of drag force to obtain $\frac{4}{3}\pi r^3 \times 0.04 \times g = 6 \times \pi \times 0.0011 \times r \times v$ \checkmark $v = 0.071 \text{cms}^{-1} \text{ s}$		2

Q	uestic	on	Answers	Notes	Total
12.	а		ALTERNATIVE 1 the time between undulations is $\frac{3}{5.6} = 0.536 \ll s \gg \checkmark$ $f = \frac{1}{0.536} = 1.87 \ll Hz \gg \checkmark$ «frequencies match» resonance occurs so amplitude of vibration becomes greater \checkmark ALTERNATIVE 2 $f = \frac{v}{\lambda} = \frac{5.6}{3} \checkmark$ $f = 1.87 \ll Hz \gg \checkmark$	Must see mention of "resonance" for MP3	3
			«frequencies match» resonance occurs so amplitude of vibration becomes greater \checkmark	Must see mention of "resonance" for MP3	
12.	b		«to increase damping» reduce Q ✓		1

Option C — Imaging

G	Quest	tion	Answers	Notes	Total
13.	a	i	with object placed between lens and focus 🗸 two rays correctly drawn 🗸	 Backwards extrapolation of refracted rays can be dashes or solid lines Do not penalize extrapolated rays which would meet beyond the edge of page Image need not be shown 	2
13.	а	ii	«just less than» the focal length $or f \checkmark$		1
13.	b	i	$\frac{1}{10} + \frac{1}{v} = \frac{1}{2} \checkmark$ $v = 2.5 \ll m \gg \checkmark$		2
13.	b	ii	real, smaller, inverted ✓	All three required — OWTTE	1

(Question 13 continued)

Q	uesti	on	Answers	Notes	Total
13.	С	i	two correct rays coming from Q ✓	Allow any two of the three conventional rays.	
			locating Q' below the main axis AND beyond f to the right of lens AND at intercept of rays \checkmark	R Q Q f f Q' f Q' f Q'	2
13.	С	ii	$\frac{h}{h'} = \frac{-x}{x'}$ OR 2.5 or 10×0.3 «m» ✓		2
			«−» 0.075 «m» 🗸		
13.	С	iii	towards Q ✓	Accept move to the left	1
13.	С	iv	spherical aberration ✓ top of the shape «R» is far from axis so no paraxial rays ✓	For MP2 accept rays far from the centre converge at different points	2

Q	uestion	Answers	Notes	Total
14.	а	plane mirror to the left of principal focus tilted anti-clockwise \checkmark	eg:	
		two rays which would go through the principal focus \checkmark	parabolic reflector	
		two rays cross between mirror and eyepiece \textit{AND} passing through the eyepiece \checkmark	principal focus eyepiece	3
14.	b	$\frac{2 \times 1737}{363300} = \frac{0.0120}{f} \checkmark$ $f = 1.25 \ll m \gg \checkmark$	Allow ECF if factor of 2 omitted answer is 2.5 m	2
14.	C	$M = \frac{1.25}{0.05} = 25 \checkmark$		1
14.	d	parabolic/convex mirror instead of flat mirror \checkmark		1 max
		eyepiece/image axis same as mirror ✓		1 max

Question		on	Answers	Notes	Total
15.	а		realization that θ min is the critical angle \checkmark		
			$\theta = \ll \sin^{-1} \frac{1.48}{1.5} = \gg 80.6 \ll 2$	Accept 1.4 rad	
			$\frac{1}{1.5} = 00.0 \times 10^{-1}$	Accept 0.16 rad	3
			$\beta = $ «90 – 80.6 = » 9.4 « $^{\circ}$ » \checkmark		
15.	b		because the critical angle is nearly 90° \checkmark		
			then only rays that are «almost» parallel to the fibre pass down it \checkmark		3
			so pulse broadening is reduced \checkmark	OWTTE	

16.	а	evidence of finding the gradient 🗸	
		$\mu = $ «-gradient =» 59.9 « cm ⁻¹ » \checkmark	2
16.	b	$I = \frac{I_0}{25000} \checkmark$	2
		$(\ln 25000 = \mu x) \times x = 0.17 (m) \text{ or } 1.7 (m) \text{ or } 1.7 or$	

Option D — Astrophysics

Q	Question		Answers	Notes	Total
17.	а	i	«nuclear» fusion 🗸	Do not accept "burning"	1
17.	а	ii	brightness depends on luminosity and distance/ $b = \frac{L}{4\pi d^2} \checkmark$	Accept answer in terms of Jupiter for MP2	2
			Vega is much further away but has a larger luminosity \checkmark		
17.	b	i	a group of stars forming a pattern on the sky \textit{AND} not necessarily close in distance to each other \checkmark	OWTTE	1
17.	b	ii	the star's position is observed at two times, six months apart, relative to distant stars \checkmark parallax angle is half the angle of shift \checkmark * * * * * Vega p 2 postions of Earth 6 months apart	Answers may be given in diagram form, so allow the marking points if clearly drawn	2

(Question 17 continued)

Q	Question		Answers	Notes	Total
17.	b	=	$\frac{1}{0.13} = 7.7 \text{ (pc)} \checkmark$ so $d = 7.7 \times 3.26 = 25.1 \text{ (ly)} \checkmark$		2

18.	а	two stars orbiting a common centre «of mass» ✓	Do not accept "stars which orbit each other"	1
18.	b	$\ll \lambda \times T = 2.9 \times 10^{-3}$ »		
		$T = \frac{2.9 \times 10^{-3}}{115 \times 10^{-9}} = 25217 \text{ «K » } \checkmark$		1
18.	С	use of the mass-luminosity relationship $or \left(\frac{M_{\text{Sirius}}}{M_{\text{Sun}}}\right)^{3.5} = 1 \checkmark$	Conclusion is given, justification must be stated	0
		if Sirius B is on the main sequence then $\left(\frac{L_{\text{SiriusB}}}{L_{\text{Sun}}}\right) = 1$ which it is not» \checkmark	Allow reverse argument beginning with luminosity	2

(Question 18 continued)

Question		on	Answers	Notes	Total
18.	d	i	$\left(\frac{L_{\text{SiriusB}}}{L_{\text{Sun}}}\right) = 0.025 \checkmark$ $r_{\text{Sirius}} = \ll \sqrt{0.025 \times \left(\frac{5800}{25000}\right)^4} = \gg 0.0085 r_{\text{Sun}} \checkmark$		2
18.	d	ii	white dwarf 🗸		1
18.	e	i	Sirius A on the main sequence above and to the left of the Sun <i>AND</i> Sirius B on white dwarf area as shown ✓	Both positions must be labelled Allow the position anywhere within the limits shown.	1

(Question 18 continued)

Question		on	Answers	Notes	Total
18.	e	ii	arrow goes up and right and then loops to white dwarf area ✓	$\begin{array}{c} 1000000L_{0}\\ 10000L_{0}\\ 100L_{0}\\ 100L_{0}\\ 100L_{0}\\ 100L_{0}\\ 100L_{0}\\ 100L_{0}\\ 1000L_{0}\\ 10000\\ 1000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10$	1

19.	а	galaxies are moving away	Do not accept just red-shift	
		OR		1
		space «between galaxies» is expanding \checkmark		
19.	b	$\ll \frac{\Delta\lambda}{\lambda} = \gg \frac{1.04}{1.04} = \frac{v}{4}$	Accept $2.7 \times 10^6 \text{ sm s}^{-1}$	
		$\frac{1}{\lambda} - \frac{1}{2} \frac{1}{115} - \frac{1}{c}$	Award [0] if 116 is used for λ	2
		0.009 <i>c</i> ✓		

Q	Question		Answers	Notes	Total	
20.	а		interstellar gas/dust «from earlier supernova» ✓			
			gravitational attraction between particles \checkmark			
			if the mass is greater than the Jean's mass/M _j the interstellar gas coalesces \checkmark	MP3 can be expressed in terms of potential and kinetic energy	4	
			as gas collapses temperature increases leading to nuclear fusion \checkmark			
20.	b		fluctuations in CMB due to differences in temperature/mass/density \checkmark			
			during the inflationary period/epoch/early universe \checkmark		2	
			leading to the formation of galaxies/stars/structures \checkmark		3 max	
			gravitational interaction between galaxies can lead to collision \checkmark			

(Question 20 continued)

Q	Question		Answers	Notes	Total
20.	С		ALTERNATIVE 1		
			kinetic energy of galaxy $\frac{1}{2}mv^2 = \frac{1}{2}mH^2r^2$ «uses Hubble's law» \checkmark		
			potential energy = $\frac{GMm}{r} = G\frac{4}{3}\pi r^3 \rho \frac{m}{r}$ «introduces density» \checkmark		
			KE = PE to get expression for critical $\rho \checkmark$		
			ALTERNATIVE 2		3
			escape velocity of distant galaxy $v = \sqrt{\frac{2GM}{r}} \checkmark$		
			where $H_0 r = \sqrt{\frac{2GM}{r}} \checkmark$		
			substitutes $M = \frac{4}{3}\pi r^3 \rho$ to get result \checkmark		